ECT 313
Spring 2008
Lab #2 - Memory

Name:_______________________

	Purpose:
	To familiarize students with address and data bus architecture.

	
	

	Discussion:
	As discussed, a computer uses the address bus to send the address of the memory location to be ‘read from’ or ‘written to’ the corresponding pins of the memory IC. The memory IC then either puts the data requested onto the data bus, in the case of a read function, or takes the data from the data bus and places it in that memory location in the case of a write function.

In this lab we will use a simulation of a 1K PPROM to gain first hand experience with the process of reading data from memory using the Address and Data Bus.


	Procedure:
	1)
	Open the simulation found at http://www.ncatecit.info/spring_2008/ect313/labs/Lab2/ and complete the following: 

Right click on the ROM and select VIEW | EXTRA LAYERS. This will display additional information such as pin names (eg A0..A9) and identify which hex inputs and 7-segment display outputs are the HIGH and LOW order nibbles.

Make the nOE (Output Enable) and nCS (Chip Enable) active (hint: the “n” is the same as a BAR in digital logic).

Place the value 00H on the hex inputs (the ADDRESS LINES)

You should see FFh on the OUTPUTS, if you do not, STOP and ask for help. This indicates that memory location (Address 00h) contained a value of FFh and that this value is being placed on the DATA LINES.



	
	2)
	Now place the value 01H on the Address Lines
Read the data lines as before. You should receive a 00H on the Data Lines. 


	
	3)
	Now place the address 25H on the address lines.
Starting from that location, read in each consecutive hex value from memory, until you read a 0AH. Place each value Table 1. 

Once the data indicates a 0AH, stop and translate the HEX values to characters using the ASCII CODE. 

This is an example of how text messages are stored in memory. 

Answer the following question: The last two characters (?? 0A) are special. What do they do? ____________________________

 _____________________________________________________

 

	
	4a)

	Now place address 50h on the address lines. 
Read in one byte of data, and place it in TABLE #2. This is how a value from 0 – 255 dec would be stored in memory. 
Convert the value to Decimal and place it in the table. 
Now, open the EMU8086 program (Available in Smith 4007, 4008 or Price 201b or download a trial from the class website) select “NEW” then “Empty Work Space” then “OK”. From the menu bar, select “MATH” then “Base Converter”. Put the HEX value obtained in the box marked “hex”, the box marked “dec unsigned” should contain the number you calculated, the box marked “dec signed” contains the negative number represented by the SAME hex number (place this value in TABLE #2). 
In a computer, the PROGRAM determines whether the number is a signed or unsigned number, just looking at the value in memory does not indicate it’s sign.



	
	5b)
	Read the next two bytes of data in memory, place them in TABLE #3. Place the first byte in the second block and the second byte in the first block (ie reverse order). Convert this 4 digit hex value to decimal. 

This is how the INTEL processor family stores a 16 bit number, Least significant byte FIRST and most significant byte second!

Once again use EMU8086’s Base Converter (this time select 16bit) and find the signed and unsigned value of the hex number.



	
	
	

	
	6)
	Now place address A0h on the address lines. 
Read next two bytes and place them in TABLE #4 in normal order. 

Assume this value is representing a date (See on line text chapter 2) convert the value to a date. 



	
	7) 
	Go back to address 00H. Now make the 
[image: image1.wmf]OE

 line inactive. What is the output now?_____________________________________



	
	8)
	Set 
[image: image2.wmf]OE

 active once again and set 
[image: image3.wmf]CS

E

AL

/

 inactive. What is the output now?)__________________________________________




Table #1 – Text Stored In Memory. Note that the table is longer than necessary; remember to stop when the value of OAh is returned from memory.
	Memory Address
	Hex Value
	Ascii Character

	25H
	
	

	26H
	
	

	27H
	
	

	28H
	
	

	29H
	
	

	2AH
	
	

	2BH
	
	

	2CH
	
	

	2DH
	
	

	2EH
	
	

	2FH
	
	

	30H
	
	

	31H
	
	

	32H
	
	

	33H
	
	

	34H
	
	


Note: Table is LONGER than required. Stop when you reach an address containing 0AH

Table #2 – 8 Bit Number Stored In Memory

	Memory Address
	Hex Value
	Decimal Value
	Signed Decimal Value

	50H
	
	
	


Table #3 – 16 Bit Number Stored In Memory. Note the values are stored Least Significant byte first, Most Significant byte 2nd. 
	Memory Address
	Value

	51H
	

	52H
	


	Memory Address
	Hex Value
	Decimal Value
	Signed Decimal Value

	52H
	51H
	
	
	

	
	
	
	
	


Table #4 – Date Stored In Memory

	Memory address 
	Hex Value
	Binary Value

	A0h
	A1h
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	M
	M
	M
	M
	D
	D
	D
	D
	D
	Y
	Y
	Y
	Y
	Y
	Y
	Y

	
	
	
	
	
	


This represents what date? __________________________________________________

What is the significant of this date in US History? _______________________________

Questions:

a. How many address lines does the IC have?

b. How many bytes of information can the IC hold?

c. How many Kilobytes of memory is that? (Hint: when talking about computer memory – KILO does NOT mean 103)
d. A typical EPROM is the 27C64. What does the value “64” mean in the IC part number (Hint: Look for a datasheet on the internet)?

e. Is there a way to determine what a value in memory actually represents? If so explain how it can be determined, if not, state why this is the case.
f. Speculate as to the meaning of the responses you received in Step 7 and 8. Why would these inputs be required? Explain why a computer system with multiple Memory IC’s wouldn’t work without these states.
g. Using what you have observed, state how multiple ROMS could be connected to a computer with one additional address line. Keep in mind that both IC’s outputs would be tied together. 

_1060351772.unknown

_1201445076.unknown

