C’hipP/wq+

Universal Programmer

User’s Guide

Phyt©Gn

Phyt@n Universal Programmer ChipProg+

Copyright Notice

©Copyright 2006 Phyton, Inc. Microsystems and Development Tools. All rights
reserved.

No part of this document may be reproduced without the prior written consent of Phyton.
The software described in this document is furnished under a license and may only be
used or copied in accordance with the terms of such license.

Disclaimer

The information in this document is subject to change without notice and does not
represent a commitment on any part of Phyton. While the information contained herein is
assumed to be accurate, Phyton assumes no responsibility for any errors and omissions.

In no event shall Phyton, its employees or the authors of this document be liable for
special, direct, indirect, or consequential damage, losses, costs, charges, claims, demands,
claim for lost profits, fees, or expenses of any nature or kind.

Trademarks

ChipProg+ is a trademark of Phyton, Windows and MS-DOS are trademarks of Microsoft
Corp. All other product names are trademarks or registered trademarks of their respective
OWners.

Introduction 2

Phyt@n Universal Programmer ChipProg+

Table of Contents

(©{aF=T0] =1 S0 R [1 o To LU o 4 o o IS EERR 4
o Tod = (o [T O 0] o1 (Y o | (SRR 5
YV S G T = To (U= g1 PR 5

Chapter 2 Software INStallationoocuiiiiiiiee e 6

Chapter 3 Hardware Installation and Start Upccccevvee i 8
Controls and Insertion Devices and AApLErScoouviiiiiiiiie e 8
[T o 1= o] SRR 8
Programmer Self-TESHNGc.i it e b e e e 8
Starting the PrOgramMIMETt e e e e e e e e e e e e e e anneeee 9

Chapter 4 Toolbars and Graphic User Interface Customizationccccceeeeeiiiiiiinnen. 11
Customizing the ENVIFONMENT..........uiiiiiiiiiiiii ettt e e e e e e e e e e eneeees 11

Chapter 5 The ‘FIle MENU ...t a e s e e e e e e e s e anneees 15
Loading and Re-loading Files t0 BUFEIS.........cccoiiiiiiiiiiic e 15
Saving Fles from BUEIS........coi e e e e e e anneees 17
Saving and Loading Configuration FileSccueiiiiiiiiiiiiieee e 17

Chapter 6 The ‘View’ Menu and Programmer WindOWS.........ccccvvveeeiiiiiiienneee e e e 19
‘Program Manager WINAOW...........eeeeeeeiiiiiieireee e e s sttt ee e e e e s s s e ee e e e s s snntaseeeeeeesssnnsnnnneeees 19
‘Device and Algorithm Parameters’ WINAOW............ceiiiiiiiiiiiiiiieeeiiee e 22
‘BUffer DUMP’ WINGOWooiiiiiiiiei ettt et e s anb e e 25
‘Device INFOrmMation” WINGOW.uuiieiiiiiiiieii et e e e e st e e e e e s e e nnnneeaeeeee s 31
L O7e] g E=To] [V1Yo To [0 PP UPRT TSP 31

Chapter 7 The ‘Configure’ Menu and Main Programming Settingsccccccevvvniiiinneen. 33
SeleCting @ TArgEt DEVICE......cccii et e e e e e e e e s e st e e e e e e e s e e nnnneees 33
Picking a Device from HIStOry LiSt.........cccuiiiiiiie e e e arraee e 34
Adding and Deleting BUFEISuiii i e e raae e 34
LO70] o1 To 0 a1 aTo [=d (=1 (=T =] oo =1 R 35
Configuring the Programming ENVIFONMENL............coiiiiiiiiiriee e e e e 35

Chapter 8 The ‘CommMaNdS’ MENUccoecuiiiiiieie e e e e e s e e e e e e e s nnnneees 36
O =11 G @] 1T =2 o SRS 36
‘Program’ COMIMANTuuiieiiiiee ettt ettt e e kb e e e e st be e e e e aabe e e e s aabeeeesabbeeesanreeeeannes 37
Verify’ COMMEANG.......oiiiiiiiiie ittt e e st e e e st b e e e s bt e e e e aabeeeessabneeesanes 37
R LT 1o B @0] 141011 = Vo o EE PP UPPTT PR 38
‘Eras@’ COMMIANGttt e e ettt e e e e e s r bbbttt e e e e e s e s aabeeeeeeaeesaaannbbeaeeaaeeeaaannnbeneaeas 38
‘Auto Programming’ COMMENG........ccoaiiiuiiiiiieee ettt e e e e e e e e e e e be e e e e e e s e s anbreaeeeaeas 38
‘Local MENU" COMMANGoiiiiiiiiee ittt ettt et e e e et e e e e snbe e e e e snbae e e s antbeeeeansbeeeeannes 38
‘Calculator COMMANG.........oiiiiiiiee et e e e st e e e e srb b e e e anbe e e e s sbbeeeeansbeeeeannes 38

Chapter 9 The ‘SCrPLS MENU....uuuiiiiie e e e e e s e s rre e e e e e e e s e nnreees 39
Creating and EditiNg SCrIPLS ...coov i s s e e e e e e e e e s e r e e e e e s e nnnnnees 40
Debugging and RUNNING SCPLS ...vviiiiiiiiiiiieiee et e e s r e e e e e s s e e e e e e s e ennnrrnereeee s 42

Chapter 10 How to Operate the Programmer.........c.ueevveeeii i e e 43
How to Check if @ DeVICE IS BIANKcooueiiiiiiiie ettt e e e e s 43
HOW 10 EFASE @ DBVICE ..oeiieiiiiiiiiiiiiee ettt ettt e e e e e ettt e e e e e e st e e e e e e e e annnreaeeeeeas 43
HOW t0 Program @ DEVICEuuiiiiiiie ettt a et e e e e e e e e snnbaaeeaaeas 43
HOW t0 Verify Programmingcooio ittt e e e e eibebe e e e e e e s e e snnbreeeeaaeas 44
HOW t0 REAM 8 DEBVICE ...coiiiiiiiiiiitit ettt ettt e e e e e et e e e e e e e e snabeaeeeaeas 44
How to Save the Data Read out from @ DEVICEcceeiiiiiieiiiiie e 44
HOW 10 DUPIICALE @ DEBVICE........uiiiiiieie ettt ettt e e st e e e e e s et e e e e e e e e s snnraaeeeaeas 44

Introduction 3

Phyt@n Universal Programmer ChipProg+

Chapter 2 Introduction

ChipProg+ is a universal programmer that supports thousands of programmable devices,
including parallel and serial EPROMs and EEPROMSs, embedded microcontrollers with
reprogrammable code and data memories, low-density PALs and PLDs. ChipProg+ can
handle many distinct device technologies. The picture below shows the ChipProg+
programmer surrounded by several types of programming adapters.

ChipProg+ has a 40-pin zero-insertion-force (ZIF) socket for direct programming of dual-
in-line (DIP) package devices. The socket accepts any Phyton brand adapter, as well as
many popular third party adapters, and thus works with widely used non-DIP packages
(SOIC, SSOP, TSOP, PLCC, QFP, BGA and others.). A variety of devices
programmable in-system can be programmed by using special cable adapters without
removing from the equipment where the device is installed.

The programmer is small and intended for both engineering and low- to mid-volume
manufacturing. The ChipProg+ software runs under Windows. It’s easy to use and very
intuitive. It includes all operations that are commonly needed by engineering
programmers, as well as an embedded script language and some tools to help automate
the programming.

Introduction 4

Phyt@n Universal Programmer ChipProg+

Package Content

A standard ChipProg+ kit includes, but is not limited to:
A programmer unit enclosed in a plastic bag
Power supply (14V - 15V/0.5A unregulated or 18V/1A regulated)
A cable for connection to a PC parallel (printer) port (LPT)
Software on a CD-R

If the programmer has been ordered with additional adapters the kit may include them or
they may be shipped in a separate shipping container.

System Requirements

A personal computer working under control of Windows 98/2000/NT/XP
Pentium-11 CPU or higher

256MB of RAM

At least one parallel line printer (LPT) port that can be assigned for exclusive use
by the programmer

A hard drive with at least 100MB of free space

Introduction 5

PhytGn

Chapter 3 Software Installation

Universal Programmer ChipProg+

The included Phyton CD contains the ChipProg+ software package and associated user
manuals. Follow the procedure below to install the software.

Phyton €

Installing fram a CDROM

2l x|

8, Phyton ChipProg+ Programmer v. 4.00,12 Bel

License Agreement

Please read the following license agreement carefully.

NDTICE: ﬂ

Phyton, Inc. Microspstems and Development tools [hereafter Phyton] licenses the accompanying
software to you only upon the condition that vou accept all of the terms contained in this license
agreement. Please read the terms carefully before continuing installation, as pressing the “ves' button
will indicate pour assent to them. 1F you do not agree to these terms. please press the "no'’ button to
et install

E
% 1 accept the tems of the license agreement
" | do hot accept the terme of the license agreement
I
e
Accept the License Agreemenr Terms
&, Phyton ChipProg+ Programmer v. 4.00,13 Bel 21x|
Inztallation Folder
Plesse chonse the folder ta install Phyton ChipPrag+ Programmer below. I the folder specified does not
euist, it wil be created.
1~ Folder:
= =
[EPrytor Dprognthd_00_13 T

Select a Destination Folder

Insert the CD in a CD drive. The auto-run will
launch the installation dialog. Click the

button. If the disk auto-run
function is disabled, start the setup.exe file from
the CD.

Clicking the button invokes an

installation menu for demo versions of other
Phyton development tools.

Read the Phyton License Agreement. Use the
button to scroll down the text.

If you agree with the license terms, check the top
radio button and click [Next. If you do not accept
the license terms, installation will terminate.

The installation program prompts the user to
specify the folder for installing the programmer
software. The installation process chooses a
default folder on your C drive. If this folder is
acceptable, click [install. If you wish to specify
another existing folder, you can browse for it.

If you prefer, you can type in the entire path to
the folder. In either case, click the button to
continue or return one step back if necessary.

Software Installation 6

PhytGn

Universal Programmer ChipProg+

2, Phyton ChipProg+ Programmer v. 4.00.13 Bel all: zlxll The computer dlsplays the installation process
e progressing and the files being installed.
C:APhytantUprognttd_ 00134 Dirivers\87c1 051 drv
I 2
Installation in a Process
- C:\Documents and Settings’, ISG',Start Menu',Prograr Lor —l—|'|E' | x| When InSta| |atI0n |S Complete, the Computer
Fle Edit Wiew Favorites Tools Help - - . - .
s G s G B E displays a destination folder containing a set of
| Address [[8 cipocuments ang SatingsUSGIStar MenuIPrograms\Phiylan ChigProg+ Programmer»| @ Go shortcuts to the tools and manuals
MName / i Size | Type | Modified |
@jAdapters Connection List 1KB Shortcut 1112120058 517 PM
@Ch\pf—‘mw On-Line Help 1 KB Shorteut A 22005517 PM
4% Phyton ChipPrag+ Dema 1KB Shortcut 1112020058 517 FPM
&% Phyton ChipProg+ 1KB Shortcut 111122005 517 FM
%1 Phyton WEB site 1KB Shorteut 11/12/2005 517 PM
52 Revision Histary 1KB Shorteut 111122005 517 FM
ﬁaumnalal\ Phyton ChipProg+ Programmer 1KB Shorteut N 22005 517 FM
] ChipProg+ par 1KB Shorteut 11/12/2005 5:23 PM
|a abjeat(s) 372KE @ My Computer |

ChipPrag+ Shortcuts Folder

The following table lists the shortcuts that are accessible from the screen.

Screen Selection
Phyton ChipProg+

Phyton ChipProg+ Demo

ChipProg+ On-Line Help
ChipProg+ pdf

Adapters Connections List
Revision History
Phyton website

Uninstall

Program Launched or File Invoked
Launches programmer software

Launches demo version of the programmer software, which can be evaluated without the
ChipProg+ hardware

Invokes on-line Help manual
Invokes the programmer manual in the PDF format

Invokes a Microsoft Excel file with diagrams of all Phyton programming adapters for
ChipProg+

Invokes a history of ChipProg+ software versions’ updates

Connects a computer to the www.phyton.com website if this computer is connected to
Internet

Launches the uninstaller to remove the ChipProg+ software from a computer

Software Installation 7

http://www.phyton.com/

Phyt@n Universal Programmer ChipProg+

Chapter 4 Hardware Installation and Start up

Controls and Insertion Devices and Adapters

The picture below shows the top of the programmer. A parallel cable connector for
linking to a PC parallel (printer) port and a coaxial
connector for connecting a power adapter cord are situated
at the rear of the programmer unit. A zero-insertion-force
(ZIF) 40-pin DIP socket on top of the unit allows insertion
of DIP-packaged devices 150 mil to 300 mil wide. A
pictogram at the left of the ZIF socket prompts correct
positioning of the device to be programmed. This will be
either a DIP-packaged chip or an adapter for non-DIP
devices.

LED Indicators

There are three LEDs on top of the programmer:
+ POWER - green LED is always on when the
programmer is powered
ERROR —red LED is on when programming
operation failed or an over-current condition was
detected through the target device. When this LED
is illuminated, the programmer blocks any signals
= coming to the socket pins.
ChipPrag+ unit + BUSY - yellow LED indicates that the programmer
is executing an operation on the target device. While
this LED is illuminated, the device should not be
removed from the programming socket or disturbed in any way.

Programmer Self-Testing

The programmer always starts by conducting a few tests, which can be divided in two
groups:

Communication tests

Hardware tests

The first group checks the communication link to the PC.

The second group of tests runs a complete functionality check of all programmer
hardware resources. During the testing process the programmer generates logical signals
on the ZIF socket’s contacts. These signals may damage any devices that are present in
the socket. In most cases the programmer detects the device that’s in the socket, stops the
tests and turns on the red ERROR LED. However, to be safe, it’s best to make sure that no
devices are present in the programming socket when you start up the programmer.

Hardware Installation and Start up 8

Phyt@n Universal Programmer ChipProg+

If the programmer fails the test it issues an appropriate error message or warning on the
PC screen.

Starting the Programmer

Make sure the programming socket is empty; prior to startup you should remove any
device or programming adapter that may have been inserted.

Connect the programmer to one of the PC printer ports: LPT1, LPT2, LPT3 or LPT4.
Make sure that the computer’s LPT port that drives the programmer works in either a
standard mode (SPP) or extended mode (EPP) and that no other equipment is connected
to the same LPT port. This includes printers, security dongles, etc. It is permissible to
connect the LPT cable while the PC is running.

Check the input voltage marking on the power adapter to make sure it matches the actual
voltage value (~110V in North America and ~110 — 240V almost everywhere else). Plug
the power adapter into to the power outlet (mechanical converters for adaptation might be
required). Then plug the coaxial connector into the power input plug on the programmer
unit, and make sure the green LED is illuminated, indicating that power on.

Start the ChipProg+ program by clicking an
appropriate icon in the folder where the programmer

Phyton Programmer €

— Parallel Port

% LPT1, base address: [0378H software has been installed. You should get the

(‘: ltf';:j Uj?:: communication setup screen on the left. N
(1t oo attess [=] | [o] Select a vacant LPT port and make sure it is not

blocked or used by any other application running on
:&E’ZEL?L’;??‘CD,@;L sl b s o 5 your PC. Then click 0K to start self-tests.
o Compulr and demags i hardwrs
= nsghesPamamegs. The button in the left bottom corner of the
: dialog allows evaluation of the programmer’s user
Gemmuricatin Setin interface without use of the programmer itself.

The program confirms linking to the programmer
hardware by issuing the warning shown here. Make
el sure the programmer socket is empty and click [OK.

Make zure there is ho chip in the socket.

If the programmer has successfully passed the self-

| 2t | test, the program will open the main window.

| Otherwise you will get an appropriate error message
SR and prompt. A typical main window is shown below.

Hardware Installation and Start up 9

PhytGn

ChipProg+ [Atmel AT89C 1]
File ‘View Configwe Commands Scripts

Window Help

Universal Programmer ChipProg+

Ui MmEe

@EQ@H‘ Check Progr Verify Read Erase Auto ‘

=~

%Selecf Device |”|AtmeIATBBC2051 j‘
M[=(E3] |28 Program Manager I 2] x|
o el | PrugramManager|Dplmns&spm|
i | e
00000000h: FF FF FF FF FF FF FF FF FF FF FF FF FF|yyyyyyvysyyvy [Butfer #0: Code (128 K), bytes =
0000000Dh: FF FF FF FF FF FF FF FF FF FF FF FE FF|yyyyyy Function
0000001Ah: FF FF FF FF FF FF FF FF FF FF FF EF FF|VyVy¥yyyvyyyyyy Blank check
00000027h: FF FF FF FF FF FF FF FF FF FF FF FF FF|yyvyyvvivvyys Program m Enecte |
00000034h: FF FF FF FF FF FF FF FF FF FF FF EF FF|VyV¥yyyvyyyyvy - Read
00000041h: FE FF FF FF FE FF FF FF FF FF FF FE FF YT Werify LD
Moo0004Eh: FE FF FF FF EF FF FF FF FF FF FF FF FF Elose 1 j'
0000005Bh: FF FF FF FF FF FF FF FF §F FF FF FE FF E‘L“’;E‘“ BT
00000068h: FF FF FF FF FF FF FF FE BF FF FF §F FF oo T R Lol oy
00000075h: FE FF FF FF EF FF FF FF FF FF FF FF FF Auto Programming
00000082h: FF FF FF FF FF FF FF FF FF FF FF FF FF
000000BFh: FF FF FF FF FF FF FF FF FF FF FF FF FF
0000008Ch: FF FF FF FF FF FF FF FF FF FF FF FF FF|V9y99yvvidyii
000000ASh: FF FF FF FF FF FF FF FF FF FF FF FF FF|VVV¥VyVyyyvyyy Blank check. calls
000000B6h: FF FF FF FF FF FF FE FF FF FF FF FE FF|yyyyyy
000000C3h: FF FF FF FF FF FF FF FF FF FF FF FF FF|VVVVVVVyyvivy ddr
000000D0h: FF FF FF FF EF FF FF FF FF FF FF FF FF|yyvyyvvyyvys Device stat [T =] Deviee endt [07FF =
000000DDh: FF FF FF FF FE FF FF FF FF FF FF FF FF|yyyyyyvyvyyvi Bufer start [0 Buffer end: Dx7FF
U00000EAh: FE FF FF FF FF FF FF FF FF FF FF FF FF|yyyyyy Code [128 K], bytes
U00000F7h: FE FF FF FF EF FF FF FF FF FF FF FF FF|yyyyyy
00000104h: FF FF FF FF FE FF FF FF FF FF FF FEF FF Fesatn B
0000011lh: FE FF FF FF EF FF FF FF FF FF FF FF FF Feady
U000011Eh: FF FF FF FF EF FF FF FF FF FF FF FF FF

000001Z2ZEh

Atmel ATB9CZ051
DIP: None
SOIC: AE-SC18/Z8U
Socket scheme

ladapter (s):

Adapler

FF FF FF FF FF FF FF FF FF FF FF FF FF

Device: Atmel ATEIC2051, Driver version: 1.00, Hardware version: 1.00, Drivers manitor version: 1,00

"~ Device and Algorithm Parameters

Default

All Default

Algonithm
Vop
- Voo

"Faling
1200v
500V

Progiamming algorithm
High program volkage
Power supply voltags

www phyton com|

ChipPrag+ Main Window

Hardware Installation and Start up 10

Phyt@n Universal Programmer ChipProg+

Chapter 5 Toolbars and Graphic User Interface Customization

The picture below shows the complete set of toolbars for the programmer. By default the
ChipProg+ main window opens with toolbars that do not include all these controls.

The top line, which is shown right under the ChipProg+ title line of the main window, is
the main menu. A second line under the main menu line displays icons and buttons of the
most-frequently used commands that deal with files and target devices. The third line
displays a target device selector and the fourth line, which is not displayed by default,
includes options for an embedded editor and commands for scripts.

#& ChipProg+ [Atmel AT89C51]

File Wiew Configure Comnmnands Scmpts Window Help

) J i S

JEHE & ”%96@321&1&‘ [EEE = ==

Customizing the Environment

The programmer working environment includes: toolbars, key mapping, fonts, colors and
other minor parameters. There are two way to invoke the dialog for the environment
settings: a) right-click the mouse when the cursor is within the toolbar space and select
Customize..; b) select Main menu > Configure > Environment. At the first start we
suggest skipping this chapter and using the default settings of the programmer software.
You can customize the environment any time you need.

Customizing Fonts

To change the fonts for messages and data in the programmer windows click on the
tab. It will open this dialog:

o e—
= o 2| x|
Environment i X T e Il

Forts | Colors | Kep Mappings | Toobar| Miss |
| o

1
Cdows
Device and Higatim Faremel R Font) 2=
i ogiam Mariage:

~Window toolbar location ——————

o Font style: Size
+ Top =
Device Informati Couier New) Fequl |
e Pl i l |egua|
= u:-\:lu.ir
o CLeht £R Kuier 1251 Italic]
£ Right ER Kuiier KOI-8 _i Bold
o Finedsys Bold talic s _J
1 Ho toolbar gLuc\da Console 20
Lucids Sans Typewite 22
Gid— | MaviCode “x e =]
I Wertical arid i sizeable fields
Gawple
I Horizorital arid

L

Addiienal e spacing f AaBbryiz

[% [0 +| pisels
. Scupt
Define fort...
4 »
K] Use tis ford fo gl windaws |

P Iﬁ

To change the font for a particular window, select the window and click the
button. Then pick the font type, style and size from a pop-up menu and click 0K twice to

Toolbars and Graphic User Interface Customization 11

Phyt@n Universal Programmer ChipProg+

complete the font setting. After you set the font for one programmer window you can
export this setting for all other windows by clicking the Use this font for all windows button.

In the same dialog you can specify a location for each window’s local toolbar. By default
these toolbars reside at the top of the window. You can move them to any of the four
edges of the window or turn off the local toolbar by checking the appropriate radio button
in the window toolbar location Submenu.

Customizing Colors

You can set individual colors for backgrounds and texts in the programmer windows.
Click the tab in the Environment dialog to open a setting dialog, shown below.

To change a color of a particular window element, highlight it in the left pane. Then click
the [Edit button to open a color palette, pick the color you want and click |0K in the palette
box. When you complete the color configuration process, the program will prompt you to

lli‘ b Code (128 K). butes

I Environment

Fonte Colors |Kep Mappmgsl Too\barl Misc |

i
k check
pram

Color schenn

il

— Colar | o
[# = Program window colors = [4 l Bits
[=-mp Buffer Dump window calors Programming
l?actkground / Spread 2%
2 = &
Status line backgrour asic colors: H
B Shatus line text l_ CTRCEEN |
[+ = Device Information window colors i -
femp Watches wincow R Bh W
[-mp Autowstches window - l_ l—‘ - - S . - d
[- User window
- Corsole window T
(w140 Skream window - | § | . - - || . i
[-mp Script source window Lo EREENENT .
[+ -mp Source/Editar window
(- Device and Algorithm Parameters | B
I~ InhesitWindows color FDE[d el el e
it b s Beld
I~ Use inverted test/backaround color I~ ltalic EEEEEEEN
X Define Custom Colors 55 |-

A [e e

assign a unique name to the color scheme. Type the name into the Scheme name box
and click the button. You may create several color schemes and invoke them at a
later time.

Key mapping

By default the ChipProg+ program includes a number of preprogrammed hotkeys that are
used to simplify operations with the programmer. You can use these hotkeys, reassign
them and add your own hotkeys. You can assign up to two hotkeys to any command from
the Main menu tree. Click the tab of the Environment dialog to reassign
hotkeys for your convenience. See the dialog below.

Toolbars and Graphic User Interface Customization 12

PhytGn

N 2%
Fonts | Colors Key Mappings | Taabar | Mise |

Menu commands tree | Kewi | Key?
[=1- Main Window Menu -
Et-File

- Load Cirl+F1

[E = load

--Save...

~Editar window

- Configuration files...

- Autosave session on exit

Bt Al
[Test Edit
[#-- Configure
- Commands
£
[
£

2|x

- Soripts

Press the desired key
- Window

i-Help

¢l Buffer Dump window

H-- Editar: Right Pane windaw
- Editar window

i atehes windnu u j

Use buttons below to define/erase keps or: double clicl key cell to define key.
right-click to erase kep

Diefine kep 1 Erase key 1 | Define kep 2. I Erase key 2 |

o Ok Ix Cancel | 2 Heb |

Adding a Second Hotkey

Customizing Toolbars

Universal Programmer ChipProg+

To re-define existing hotkey #1 click the
button. The program will

prompt you to press a new key or key
combination.

To add an additional hotkey click the
button. The program will

prompt you to press a new key or key
combination. See the picture.

Do not forget to click the 0K button to
save all changes made in the dialog.

Click on the tab of the Environment dialog to customize buttons on the
programmer toolbars. Here you can add or remove any icons belonging to the toolbar

Y
Fonts I Cululsl ey Mappings Toolbar |Misc | %
Toolbar bands Buttonz/Commands
I Fliel 2l P& Loadile
IV ‘windows =) e
% | = FRe :
¥ Configure g T

¥ Operations on device Iz _J Save file.
B Status indicator :
¥ Device Select

I Device selection history

I Editor: File

™ Editor: Copp/tove

™ Editor: Search/Replace

I Editor: Bookmarks o
™ Editor: Options

™ Editor. Condensed Mods =l

™ "Flat" local window toclbars

I¥ Toolbar settings are the same for each project/desktop file

‘v ok ”x Cancel Il? Help I

Customizing Main Toolbar

Miscellaneous Settings

bands at left. Checking a box at left brings
to the right pane a list of the commands
that are available for the selected band.
Checking a particular command places it
on the toolbar; un-checking - removes it
from the programmer toolbar.

Several minor settings are gathered in the dialog that can be opened by clicking the
tab in the Environment dialog (see it on the picture below). Most of these settings are for

advanced users.

Toolbars and Graphic User Interface Customization 13

Phyt@n Universal Programmer ChipProg+

2

Fonts I Eululsl Key Mapplngsl Toolar Misc I

r— Main window status line— Option:
 Hone ¥ Quick watch enabled
1+ At bottom ™ Highlight active tabs
1~ At top o Dauble click on checkbos or radiobutton in

dialogs == single click + 'Ok’ button

[V Show hatkeys in pop-up descriptions

gt ¥ Gradient fillin highlight bars

- Massage Box Dplion:
* Do not display box if Console window opened
1 Always display message box

¥ Automatically place cursar at 0K buttan %

I Audible natification for emor messages

¥ Log messages to file: IEh\DPrug+ [Console.Log j
& Owenanite log file after each start

" Append messages to log file

‘v 0K, ”x Cancel ”? Help I

Miscellaneous Settings

Toolbars and Graphic User Interface Customization 14

Phyt@n Universal Programmer ChipProg+

Chapter 6 The ‘File’ Menu

The programmer main menu includes a few submenus displayed on the most top toolbar.
The following chapters describe commands (functions) of each these submenus.

The File menu includes several commands operating on files of different types (see the
picture below). The three most frequently used commands: Load..., Re-load and Save...
appear also as shortcut icons on the toolbar situated below the Main menu line (yellow
folders and a diskette).

@ ChipProg+ [Atmel AT89(| H £l b ‘I
== gl g

File “iew Configure Commands

Load. .. Ctrl+F1
Re-load Ctrl+F2

Load Reload Save

Save...
Configuration files...

Exit Alt+x

Loading and Re-loading Files to Buffers

[oadrile . e B Click the Load icon or press
e to open the loading dialog.
JurnpZ b R =] ﬁmwse...l
— File Eormat: —Buiffer to load file tor ———————————— Here you can Ioad a flle to the
€ Standard/Entended Intel HEX [~hex] Buffer #0 buffer. You can write this file into
:3:?;0'|:Zg.l:ﬂx_hex-x.s-xmu the target chip either after editing
 POF (pal] - or “as is.” The dialog enables you
(‘:J:HDGE[CL;]& to browse or to type in file paths
0T ot Subleveltoload fieto: directly. You can specify the file
Chmenbai] i format, the destination buffer (if
€ Deta (54, bytes more than one has been opened),
T e = sub-level of the file memory (if
dfis b et | | more than one exists for the target
[Cancel | % wep | device), an offset for the loading
address, and a start address for
& Devi =iz loading a binary file if the Binary

Device: Microchip PICIALES4A
Adapter (s): DIF: None

80IC: AE-SC1B/28U
S80P: AE-3PZ0-ple

image format was chosen.

The ‘File’ Menu 15

Phyt@n Universal Programmer ChipProg+

Loadable file formats

The files to be processed by the PC for the ChipProg+ contain the data to be written into
the target chip, as well as addresses in the target device and some other helpful
information. The ChipProg+ loader is able to load files in all popular formats generated
by compilers and other programs that prepare data for burning into programmable
memory devices.

Binary image files do not include information about addresses. Any file, whether or not it
specifies addresses, can be loaded into the programmer as a binary file. In order to handle
such a file, you need only specify the starting address of the binary image when loading
binary files from the PC’s disk. This format is commonly used when one reads or
duplicates an already programmed device. All other loadable formats carry addresses and
other references that enable ChipProg+ to write files accurately to specified addresses of
the target device.

The most commonly used data file format is standard intel HEX. The “HEX” designation
is somewhat misleading; perhaps it should be called “ASClI-encoded HEX.” It contains
load addresses along with program codes. This type of file can be recognized by a colon

(:) at the beginning of every text line.

Motorola S format is also very popular. As with intel HEX, Motorola S format is an
ASCII file that contains load addresses along with program codes and other information.
ChipProg+ supports all types of Motorola s files.

POF is a registered Altera-type format used for programming Altera PLDs and some
other devices. A poF file contains load addresses along with program codes, checksums
and some other information.

PRG format is a variation of the intel HEX format used for programming Xilinx PLDs.

Loading files to sub-levels

For some programmable devices (especially microcontrollers), the fully addressable
memory range may comprise a number of functionally different areas (sub-levels), and a
compiler may generate distinct files for each sub-level. Each sub-level is associated with
a certain type of target device's address space. For example, for the Microchip PIC16F84
microcontroller (see the picture above) every buffer has three sub-levels: a) code
memory; b) EEPROM data memory; c) user's identification; for the Intel 87C51FA
microcontroller every buffer has two sub-levels: a) code memory; b) encryption table.
ChipProg+ recognizes the specific sub-levels in each supported device. Select each sub-
level to load a chosen file to an appropriate part of memory.

Offset for loading addresses

When loading a file to specific addresses in intel HEX, Motorola S and PRG formats you
can offset the placement of the load file in the buffer. Just type the offset value into the
Offset for loading addresses box. For example, if data in a HEX file are located at

The ‘File’ Menu 16

Phyt@n Universal Programmer ChipProg+

addresses 100h...0FFFFh and the offset is OFO000h, then data from the file will be
loaded to the buffer at addresses OF0100h...0FFFFFh.

To re-load the most recent file loaded to the programmer’s buffer, just click the Re-1oad
icon or press [ctr+F2. This will allow you to avoid repetitive settings while you are
working with the same file.

Saving Files from Buffers

When you read from a pre-programmed memory device you may want to save the
information on a disk of your computer. Or you may want to save a file after it was
modified in the buffer.

Click the icon or press to

2lx open the saving dialog. Here you can
IFD'MDJMD% D = type in or browse for the destination
file’s name and path, and you can
‘Adds'j;f;“; e | select the file format, the buffer and
‘Emﬂm o any sub-l_evels to be saved. You can
) 2 P N also specify the start and end addresses
< ~ JEDEE of the file to be saved. By default the
£ FHE program offers to save a full space for
- Buffer to save file from ——————— - Subdevel to save file from: each existing SUb-l@VG', but you can
i > ot Bins narrow down the space to be saved by
setting the start and end addresses as
needed.
v o | X cancel |

Saving and Loading Configuration Files

To minimize the scope of configuration operations after starting, the ChipProg+ software
creates and stores several configuration files that represent the programmer’s status.

& ChipProg+ [Atmel AT89C51] Configuration files can also be saved at
File View Configure Commands Scripts Window Help any time through the commands
o et || 4 (|| check Pl appearing when you move the mouse

L T — cursor over the configuration files line
Configuration files. .. L i t ti -
Ml L B of the File menu (see the picture at the

Load desktop...

Exit Alt+X

e rom e G EL O G | |eft). It is possible to keep several sets of

File: D:\LabeI;MAED styletdF_MLOE i i
L setiliase Save session (desktop + options)...

o configuration files for different purposes
Dopuondun: O OF LU e and then load them "on the fly." There
are two types of configuration files that

can be manipulated independently:

The ‘File’ Menu 17

Phyt@n Universal Programmer ChipProg+

A desktop file that keeps information on display options and screen configuration;
it keeps all information on the position, size, colors, and fonts of all debugger
windows.

An options file that remembers the target device’s type and other options.

Before completion of its session, the ChipProg+ program writes the session file to the
current directory in order to know what desktop and options file should be loaded the
next time it starts. Desktop and options files are saved in the same folder from which they
were last loaded. Before the ChipProg+ program exits, the history file is written to the
current folder. The history file keeps a history for all input lines of all the ChipProg+
dialogues. You can save and load these configurations separately or in combination.

The ‘File’ Menu 18

Phyt@n Universal Programmer ChipProg+

Chapter 7 The ‘View’ Menu and Programmer Windows

o o Bt A This menu includes the commands for opening
Wiewy Configure Commands Scripts . . s , .
- _ particular windows within the programmer’s main
Pragrarn Manager i
window. The picture here displays what windows

) EECTTTN | C2n be open.
. Device Information

Corsole

Device and Algorithrn Parameters

Menu “iew'

‘Program Manager’ Window

The Program Manager window is the main window of the ChipProg+ software shell. It
serves for launching all operations with a target device: reading, writing, etc. and for

Program M_aﬁager : Program Manager

Iptions & split I Program Managegl Dptions & split |

spabiiai Split data Optior

IBuffer #0: Code [128 K], words, ID location [3). words, Data (B4). ILI & No zplit ™ Insert test
r— Function " Even byte
! ; 0dd byte

e 5@ Execute Il ¥ Blank check bef

- Program e 0 lank check betare program
- Read " Byte 1
erify Repetitions: " Byte 2

-Eraze |2 vI Byte 3 v Weiify after read

Edtduto. |
Bllank check cells

—addresses

Device start: {041E Yl Device end: ID:-:BFF VI
Buffer start: |0:100 'l Buffer end: Ox4E1

[Code (128 K. words

[Reverze bytes order

— Operation Progre:

Fieady
Device changed ta Microchip PICTELFE4A

Program Manager Controls Program Manager Options

setting major parameters to control these operations. The window has two tabs —
Program_Manager and Options & Splif — that open two different dialogs (see below).

Execution of Programming Functions

The ‘View’ Menu and Programmer Windows 19

PhytGn

Universal Programmer ChipProg+

The Buffer box below specifies the name of the buffer that will interact with the target
device under control of the commands shown in the Functions box. To enter the buffer
name just type it in or pick one from the history list.

IBulfer #0: Code (128 K, words, [location [),

- Blank Check.
- Program

- Read

- Werifp

i Erase

E| Dievice Parameters & D

Expanded Function Tree

LIS The Functions box displays all the commands available for a
selected target device. In addition to the commands that are
common for all target devices (Blank Check, Read, Program,

Verify, Erase), the Functions tree may include the commands
J specific for a particular selected device only. Some commands
in the tree can be grouped; such groups by default are shown
e =l collapsed. The picture here displays all the commands for the
Data group belonging to the Function tree for a selected

device (here it is a Microchip PIC16LF84A).

— Function

| [aps
3 Erecute
i Repetibions:

|- Data %
i+ Blank Check. Edit Auto... |
Program -
f

Executing of Programrming Functions

wiarking.... do not remaos

Program Manager

Program Manager | Options & split I
Buffer:

|Butfer #0: Code (1 M), bytes =l
r— Furction:
- Blank check fat
- Program i9tap
i Read
erify Fiepetitions:
i Erase |1 -i
[#l- Device Parameters
L Auto Programrning Edit Auto. |
Elank check cells

—dhddr
Dievice start: |0 VI
Buffer start: |0 VI

[Code (1 M), bytes

Device end: IDK3FFFF vi

Buffer end: 0x3FFFF

— Operation Frogress

Fleady

Checking... I | 907

Operation in progress

To execute a command you can either double
click on its line in the Functions window or
highlight it and click the button. To
execute a command from a group, expand the
group, highlight the command and double click
on it or click the button.

During command execution you will see a blue
running bar in the Operation Progress field.

When ChipProg+ executes a command it
replaces the button by the button. You
can interrupt an operation during execution by
clicking the [Stop| button.

By default the programmer executes each
operation once. However you can set a number
of repetitions for each current command by
entering the number of consecutively executed
commands into the Repetition box.

The ‘View’ Menu and Programmer Windows 20

Phyt@n Universal Programmer ChipProg+

Auto Programming

Auto Programming is the last function in the command tree. This term is used for calling
a batch of elementary functions (commands) to be executed in a certain order, usually to
automate a complex programming
procedure. The most typical set

Edit Auto Programming Functions list . 21 . .
 Selected functions ——————————————— &vallable functions————————————————— InCIUdeS: CheCkIng to make Sure that
Bl chck <l the target device is blank and can be
Data: Blank Check Data ‘1} ccadd Vet . .
v Pragam HSE 4XAF programmed; programming the device
Data: Werity Data - Read HSB & xaF . . -
R S— | JR from an active buffer; and verifying
= Data -
oEA that the device was programmed
oy . properly. However, you may_ want to
= customize the batch of functions. To
W Done | Restore default g 2 Hel : :
" program the chain of commands click
Adding a Command to the Auto Pragramming Function List the Edlt AUtO bUtton and the dialog

shown here will pop-up. Then you can
edit the batch by adding/removing any
command to/from the command list.

A selected function can be inserted precisely where you want it. To insert a function, first
highlight the function in the left pane (Selected functions) after which you want a new
command to be inserted. Then highlight the command to be added in the right pane
(Available functions) and click the Add button. The picture above displays the addition
of aRead command to the tail of the auto programming function list. The result is that
the device will be read to the buffer after programming.

To remove a command from the batch, highlight it in the pane selected functions and

click the button.

Controlling Source and Destination Addresses

Usually the process of writing into a target device is a matter of moving an elementary
piece of information (usually a byte) from buffer cell #0 to the device cell with physical
address #0, and then incrementing both addresses repeatedly until the full chip is
programmed. Similarly, when reading from a device to the buffer, the information flows
in the opposite direction, but the iteration process proceeds in the same way, until the
complete chip is read out. In addition to

— transferring the entire file, you can write or read

ciestat [0 =] cheene[oerrr =] || the device partially. In the Addresses field you

Buler start: 060 =] Bulterend: 0x1007F can set any start and end addresses of the target

fooxk 0T Tofes N device and the buffer’s start address. The screen
Buffer and Target Chip Addresses shot here shows the setting for reading a full chip

from the address Oh to the address FFFFh to the
buffer with the address offset of 80h; i.e., the device image in the buffer will be placed in
the buffer range between addresses 80h and 1007Fh.

The ‘View’ Menu and Programmer Windows 21

PhytGn

‘Device and Algorithm Parameters’ Window

Universal Programmer ChipProg+

The Device and Algorithm Parameters window is intended to display and prepare
(where possible) the device’s internal parameters and settings, which can then be
programmed into a target device by executing the Program command in the Program

Manager Window.

u\tul

Mame e

-+ Fuge Bits
i Lock bits
- Calibration Byte

i

- Algorithm "Palling"
Yoo
e pp

Diescription

Dievice Parameters

Fuse

Lack hits

Calibration valuz for the intemal RC Dscilatar
Algarithm Parameters

Programming algorithm

The parameters displayed
in this window are split in
two groups: Device
Parameters and
Algorithm Parameters.
The groups are separated
by a light blue stripe.

.00 Power supply vaoltage
@ High program vaoltage
Changed values shown inred color

Changeable parameters shown in blue color

@ Device Information . of\

Device: Atmel ATmegalid

The top group includes
parameters that are
specific for each selected
device: sectors for
memory devices, lock and
fuse bits, configuration
bits, boot blocks and other controls for microcontrollers. Not all of these are listed in the
screen shot above. It is impossible to specify absolutely all features that may appear in
future devices, and, therefore, new parameters for these new devices. Usually these
parameters are combinations of certain bits in a microcontroller’s Special Function
Registers (SFRs). Some of these SFRs can be set in ChipProg+ buffers in accordance
with device manufacturers’ data sheets. But setting the parameters via the bevice and
Algorithms Parameters Window is much easier and more intuitive.

Adapter (s): TQFF: AE-Q64-ATml=Z8

Device and Algorithm parameters

The bottom group includes parameters of the programming algorithm for a selected
device — including the algorithm type and the programming voltages.

The window is separated into three columns: 1) name of the parameter, 2) its value or
setting and 3) a short description. Names of the editable parameters are shown in blue;
other names are shown in black. Default values in the value column are shown in black,
but if the user has changed the parameter, then the new value is shown in red. If the value
is too long to display in a limited space it is represented as three dot signs (“...°). If these
dots are red it means that the parameter has been edited.

In order to edit a parameter, double click its name with the left mouse button. An
appropriate prompt box will pop up. See some examples below.

The ‘View’ Menu and Programmer Windows 22

PhytGn

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFI

Edit_[[Min Value [Hiex \fa\ue| Al Defaultl
Mame | Value | Description /
Device Parameters

tors for Protection

Algorithm Parameters
oo | 2004 | Power supply volage

& Device Infi =10l x]
Dparlce:

Adapter(s):

Span51on S29TLO3ZH-42
TESOP48 12x20mm: AE-TS485-16Am

Sector Protection for Flash Memory Device

Universal Programmer ChipProg+

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF E‘E‘]
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FEFF FF| s

=T |

v 540

™ 585410

™ sa11-5414
™ 5155418
™ Sa19-5822

[54235426

Check all Unz

E3

5512 2 R 3 o i P) S R N 3 S o i T o N 8 e
FF FF FF FF FF FF FF FF FF FF FF FF

FE EF FL_ oo ey

FF EF BOOtStEl S Byle 5

FF_FF_FF_FF _FF _FF _FF_FF FF FF FF FF FF FF E - Type nowvale
[~ Device and Algorithm Pz =10l x| |I o1

Edit_| Min, ValueIMax Value| All Defau\tl E | A
M |Vﬂue IDescu:tan HI

Device Parameters

Usger Configuration REG.#1 & REG.#2

Sector security bits

Walue for Boot Yector

alue for Boat Status Byte

2 Launch ‘Erase’ function to eraze these sectors
Algorithm Parameters k

- UCFGT & UCFG2
-~ SECx

Bt Yector

aat Status Bpte
- Sectors to Erase

LoVoe | 330 | Power supply voltage

Device Infori
Device:
Adapter (s):

Philips P8Y9LPCO3A
PLCC: AE-PZBUO
TES0P: AE-3P28U1

Setting Boat Status Byte

FEFF FEFF FFFF FFFF FFFF FFFF FFFF FEFF E‘II
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FI
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FE
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FE i
FFFF FFFFR F‘F‘F‘F‘ F‘F‘F‘F‘ FFFF FFFF FFFF FFER [CKEELD
4™ Device and Al ;lEI_IlI ¥ CKSEL3 L
| Edit_| i valie [\/amel AIIDefauItl I[E
|V 5UTO
E| Mame |Vﬂue | Descu)tlon g
Ell Device Parameters F | suTt
Ef E (| ckouT
Ff - Lock bits Lock bits E ||V ckDive
£ - Calibration Byte i] | Calibration value for the intemal RC Oscilatar [y
1. Algorithm Parameters k I BOOTRST
: - Algarithm 4 Programming algarithm " W BO0T520
Wio 5.00% Power supply valtage ¥ BOOTSZ1
Lvpp 1225V | High program voltage [~ EESHVE
[wDTON
& Device Information. =1 Checkal | e
Device: Atmel ATmegalsd
Adapteris): TQFP: AE-QG4-ATml1ZA X

The picture at left shows
how to protect two
sectors, SAQ and SA2, of
the Spansion flash
memory device, which
supports such a feature.
Just check the boxes to
protect certain sectors of
the device against
overwriting.

This picture shows how to
program the Boot Status
Byte Of the Philips
P89LPC936
microcontroller. Just type
the value into the prompt
box or pick it from a
history list (some values in
this list shown here are
inappropriate for
P89LPC936).

This picture shows how to
choose fuses for the Atmel
Atmegal69
microcontroller. Check the
boxes for those fuses you
wish to blow when the
device is programmed.

The ‘View’ Menu and Programmer Windows 23

Universal Programmer ChipProg+

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FIl|{los dslii] I
FFFF FFFF EFFFF FFFF FFFF FFFF FFFF FFFF FI
FFFF FFFF E{%E‘E‘ FFFF FFFF FFFF FFFF FFFF Fl i
Y FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF F] ¥ LB2
e and A 1ol AT o
Edit [10 ValueIMax alue| Al Defaultl ms
Mame |Value |Desc:H:|t|0n /"]
Device Parameters 1 I BLen
" BLE1Z

Algorithm Parameters

i Algarithm
Voo 5.00Y
----- \pp 12.25v

Calibration value for the internal RC Oscillator

Programming algorithm
Power supply voltage
High program woltage

1
1
1
1
1

ol x|

Device:
Adapter(=s):

TRFP:

tmel ATmegaln?
AE-QA4-ATm1Z28

Check al I

Ok

Programming Lock Bits

% EEan I B
F FFFF FEFFE
F FFEF LF -Low Frequency Crystal FFFE
F TFEF ®T - Standard Crystal FFFE
F FEFF | poprcnemstie L | reEE
EXTRC-External RC
F FFFF FFFE
F FFFF | I | I | I FFFE
e v 0K X Cancel ? Help s
F FFFF FFEE
™ Device and Algorith e (=13
I Edit I kit ValueiMﬁx alie] Al Defaultl ‘ E
E| Mame | Yalue | Dezcrption E
E Device Parameters =|llE
E E| Cunllgurallun Bits Configuration Bits E
I lator EXTRE - External RC Dseillator mode E
I Mode of Watchdog Tim b
I Memony Unprotected Memory Protection E
e MCLR MCLR internally connected to ¥dd | Mode of MCLR pin .
Algorithm Parameters
+\pp 13.00v High program woltage
- Yoop min 280V

EEN:

R

Min. poveer supply vulta!—l
-

S s

P

=10l x|

Device:
Adapter (g): DIP: MNone

S0IC 208mil:

Mlcrochlp PIC1ZLCS508

AE-SCH/ 16UM

Programming Olscillatar Mode for PICmicro

Device Parameters
i Sectors | ...

Algorithm Parameters

Power supply valtage

| Chaoose sectors for Pratection

& Device Information

1ol

Device:
adapter (s):

Macronix MXZ9LvVE00CT
TE0P48 12xZ0mm:
PE0OP44:

AE-TE46-16Am
AE-23044-168

FE'FF/—Hlslory

PrEE FRPE OFEEE OPEEE OPFEEFE OFEEE PEEE OPFEE OFERFE OEREE OPFEEFE OFEEE PFEEE |
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFEF FFEF I
FFEF FEFF FFFF FFFF FFEFF FEFF FFFF FFFF FFFF FEFF B e

FFFF FEFF FFFF FFFF FFFF FEFF FFFF FFFF FFFEF FFFF

FFEF FEFF FFFF FFFF FFEF FEFF FFFF FFFF FFEF FEFF |2-75

FFEF FEFF FFFF FFFF FFFF FEFF FFFF FFFF FFFF FFFF

FFEF FEFF FFFF FFFF FFEF FEFF FFFF FFFF FFEF

7 Device and Algorithm Parameters |
Edit | Min “alue | Max Yalue| All Default /

MName |Va|ue |Descnptlon

Editing “ec Voltage for Flash Memory

This picture shows how to
preset lock bits for the Atmel

Atmegal69 microcontroller.

Check the boxes for those
lock bits you wish to set

when the device is

programmed.

This picture illustrates how
to choose an oscillator mode
for the Microchip
PIC12LC508
microcontroller. Click on
the parameter name, select
one of four available modes
and click OK to fix the
choice. The device will be
programmed to support the
oscillator mode you have set
here.

This picture shows how to
edit the Vcc voltage for
programming a Macronix
flash memory device. The
manufacturer allows Vcc
in the range 2.7 to 3.6V.
By default the value is
3.0V. Type in any value in
the permitted range or
pick it from a history list.
Since device
manufacturers guarantee

The ‘View’ Menu and Programmer Windows 24

Phyt@n Universal Programmer ChipProg+

that their devices operate properly in limited voltage ranges, the programmer software
prevents the setting of an out-of-range value and issues appropriate warnings. When
possible, the programmer issues similar warnings whenever a user attempts to set an
incorrect value for any parameters. See the examples of such warnings below.

R i

Walue 3.75 iz out of range of 2.70...3.60 for programmwing option 'Vec!'

4

Error: Incorrect Vcc setting

[ChipProg+] Error] 2 x|

WValue 11 is out of range of 0...1 for prograwming option 'Boot Status Byte!

4

Error: Attempt to set incorrect boot status byte

IMPORTANT NOTE!

Any changes in the ‘Device and Algorithm Parameters’ window do not immediately
cause corresponding changes in the target device. Parameter settings made within this
window just prepare a configuration of the device to be programmed. Physically, the
programmer makes all these changes only upon executing an appropriate command
from the ‘Program Manager’ window.

‘Buffer Dump’ Window

The memory buffer is the part of the computer memory that represents an intermediate
link layer between a file, to be written to a target device or read from it, and the device
itself,

The ‘View’ Menu and Programmer Windows 25

Phyt@n Universal Programmer ChipProg+

Commands:
Program, Erase

File to be written to target \
Buffer D Q

File read from target . Target
Commands: device

Check, Read, Verify

ChipProg+ supports a flexible buffer structure:

+ You can create an unlimited number of buffers. The number of buffers that you
can open is limited only by the available computer RAM.

« Every buffer has a certain number of sub-levels depending on the type of target
device. Each sub-level is associated with a specific section of a target device's
address space. For example, for the Microchip PIC16F84 microcontroller every
buffer has three sub-levels: 1) code memory; 2) EEPROM data memory; 3) user's
identification sub-level.

This flexible structure allows for easy manipulation of several data arrays that are
mapped to different buffers. In order to open a buffer window, click on the Buffer dump
line in the view menu.

=4 The picture at left displays three windows
representing three parts of the same
buffer: the first (largest) shows the buffer
contents beginning at address Oh; the
second shows the same buffer contents
beginning at the same address but
displaying data in decimal format; a third
window shows the data beginning at
address 200h. The left-most column
shows absolute addresses of the first cell
in a row. The addresses always increment
by one byte: 0, 1, 2.... Each address is
followed by a semicolon (:). When you
resize the window it automatically
changes the addresses shown in the
address column in accordance with the number of codes or data that go in one line. Some
windows may be split into two panes — left pane for data in a selected format and right
pane showing the same data in ASCII format. The window has a toolbar for invoking
setting dialogs and commands. Right under the toolbar the program displays a full path to
a loaded file and a checksum of the dump.

.EI!:

Lood | Smve | Conigers Buer| o0 | \iew 1/od% | Biocid
| HEX -

At |

The ‘View’ Menu and Programmer Windows 26

PhytGn

Universal Programmer ChipProg+

Setting up the Buffer Dump window presentation

The button on the Buffer window’s toolbar invokes a dialog that sets the window
presentation. If the active buffer has more than one sub-level then an appropriate buffer
sub-level window can be opened (or activated if it is already open) by double clicking the
sub-level name (Data sub-level on the picture below). Here you can set the presentation
formats for data and addresses for your convenience. By default both formats are
hexadecimal.

The Reverse byte order option is helpful when
your are programming a 16-bit EPROM for a

i - : : :

S ———— =21 microcontroller, for which a C compiler or linker
= = I

T EE— Coe v O generates 16-bit output files in which the most

Double click to open

— Data dizplay format
" Binary

' Hexadecimal

" Decimal

" Dctal

500

~Addrezs display format—; x Cancel |

£~ Binaiy

& Hexadecimal
 Decimal

" Oetal

— Optiong

™ Beversa bytes order
™ Signed values

¥ Digplay checksum

? Help |

significant bytes are located at the lower address
of the word. Many C compilers for 8051
microcontrollers generate such files. Check this
option to program a 16-bit EPROM with the byte
order reversed.

Check the signed value option to display data
as positive or negative figures. If you wish to
watch the buffer checksum check in the pisplay
checksum box.

Buffer Dump Window Setup

Configuring a Buffer

r~ Size of Sub-Level 'Code”

B Mbytes
15 Mbytes

© 32 Mbytes
€ B4 Mbyles

r Fill buffer with data:
I Before |nading file
I Alter devios is selected

Data to fil buffer with:
% Predefined [3FFFH)
€ Custom:

OFFFFFFFEH -

Buffer Configuration

2] By default the first opened buffer is named
[—‘ ‘Buffer #0°. The next buffer gets the name
Buifer H0 =l [w® o I

‘Buffer #1°, and so on. By default each buffer
has a minimal size of 128K RAM in a PC and
by default the program initializes this memory
with a predefined value (usually OFFh). You
can customize these buffer settings. Click the

button on the Buffer window
toolbar — this opens the dialog at the left.

In this dialog you can name the buffer as you

wish — just type any name into the Buffer Name box. Check a radio button to assign an

appropriate memory size for the code or data to be programmed into the target device or
to be read from it.

Specify if you want the ChipProg+ program to initialize the buffer with a predefined data
pattern or a custom mask.

The ‘View’ Menu and Programmer Windows 27

PhytGn

Setting the Buffer Dump Start Address

Display from address i

i~ Type new address to display from;

|2DDDh

Histary

MNew Address for Buffer Dump

Editing in Buffer Dump

50 Bl E7 ¢
31 12 &4 :

T ———————
N R - 1odify memory

— Tope new wvalue:

- [ocah

g5 a

7 0 =
D3 £
F4 1E DE ¢

AC 43 E6 B
96 28 B8 [

o B B S o W

— Histary

‘DFEh g ‘

MWodiffying Data under Cursar

Universal Programmer ChipProg+

To change the buffer dump’s start address
click the button of the Buffer bump
window toolbar. You may then enter any
address in the permitted range or you may
pick one from the history list.

By default the button on the Buffer
Dump window’s toolbar is pressed
down and the button is greyed out.
This indicates that the program prevents
data in the buffer from accidental or
intentional changes — you can only
examine the buffer contents. To enable
editing, click the button to release
it. Then you may overtype the value of
any data under the cursor. Or, you can
click the button on the window
toolbar to type a new value for the data

under the cursor, or pick a value from a history list.

Operations with Blocks in Buffer Dumps

ChipProg+ provides several convenient ways edit data in buffers by operating with
blocks of data. To open the operation with memory blocks dialog click on the
button on the window toolbar. This opens the dialog below.

The ‘View’ Menu and Programmer Windows 28

Phyt@n Universal Programmer ChipProg+

Buffer #1
Buffer #3

Source————— [Destination—————— [~ Operation
Buifer: IVBHHB“ £ Fill with data: 00h
| Buffer 40 " Search for data:

Operations with memory block \] 2 x|

Ll

B uffer #1
& Copy

" Compare

| Sub-level: © Invert

Code (128 K], words " Calculate checksum
1D location (8 1, words % begate result
I~ wirite result to destination
€ AND with mask: I 'I

Start address: Start address: OR with mazk: [

1E70n =1 |[so4 1| | € xR with mask: =

End address:

[ic7sn = [o | [2 Hep |
Full ;ahge | ’ml

The fol
Within

Within

Operations with Memaory Blocks

lowing operations are available though this dialog:

one buffer (Source)

Fill a part of the dump with a specified value

Search for a particular value or symbol

Invert the byte order within words in a selected block

AND, OR or XOR data records within a selected block with a specified value and
write the results to specified locations.

one buffer (Source) or between two buffers (Source and Destination):
Copy a data block from one buffer to another or to another place in the same
buffer

Compare two blocks for identity of contents

Calculate a checksum of a selected block and write the result to a specified
location

Fill with data

This operation allows filling a part of the Source buffer with the value specified in the
box. Values can be entered in one of two forms:

a sequence of numbers separated with a space, comma or semicolon. Numbers
may have any legal format, for example: 254 or 0A5H or 0, 3, 66, 77h, 2;

a character string enclosed in double quotes. The string may contain characters as
well as symbolic constants in the C language format:

New line (line feed) HL (LF) | \n'
Horizontal tabulation HT \t'
Vertical tabulation VT W'
Backspacing BS \b'
Carriage return CR \r'
Form feed FF \f
Backslash \ A\
Apostrophe ' \"
Quotation mark " \"
Zero character (null) NUL \0'

The ‘View’ Menu and Programmer Windows 29

Phyt@n Universal Programmer ChipProg+

The symbol can also be presented by its hexadecimal value, preceded by the symbols "\x'
and containing exactly two hexadecimal digits.

Here are some examples:
“Copyright”
"Author:\r\nJohn Smith"
“Version: \x01”

Click on the button if your source block size is equivalent to the full address
range of the target device. The program will automatically fill in the End address box.
Or, you can specify the buffer range that you would like to fill with some data. Specify
the destination buffer name and sub-level and the start destination address. Then type the
data into the box or pick them from a history list and click [0k to complete the operation.

Search for data

This operation launches a search for the data value specified in the box in a specified part
of the source buffer. The rules for entering data (or value) for search are absolutely the
same as for filling a buffer with specified data (see above).

Copy

This operation copies the contents of a specified part of the source buffer to the
destination area of the same or another buffer, beginning from a specified address. For
example, the settings in the dialog picture above specify copying the contents of six
locations beginning at the address 1C70h from the sub-level code of Buffer #0 to the
sub-level pata of Buffer #3 at the addresses 30h to 35h.

Compare

This operation compares the contents of a specified part of the source buffer with
contents of the destination area of the same buffer or another existing buffer, beginning
from a specified address. If compared blocks mismatch, the programmer issues a warning
that displays the mismatched data and their addresses, and then prompts to allow
continued comparing.

Invert

The operation inverts data in a specified memory block. By “invert” is meant the
changing of each binary 1 to a binary 0 and vice versa.

Calculate Checksum

If the Display checksum box is checked in the Buffer Setup dialog the programmer
always displays the checksum for a full buffer at the top of the buffer window. In
addition, you may calculate a checksum of the data within a specified block of the source
area of memory.

Different algorithms are used for checksum calculation in programmers and in embedded

software. By default the ChipProg+ program calculates the checksum as a 32-bit value by
simple addition. If the sub-level has byte organization, 8-bit values are added. If it has

The ‘View’ Menu and Programmer Windows 30

Phyt@n Universal Programmer ChipProg+

word organization (for example as Code memory of Microchip PIC microcontrollers)
then 16-bit values are added for the checksum calculation.

For implementation of more-complicated checksum algorithms use the ChipProg+
embedded Script file language (read more about Scripts in an appropriate chapter of this
guide).

You may negate the checksum by checking the Negate box. This will subtract a
calculated checksum from zero. This method of checksum calculations is used by some
developers.

If the write result to destination box is checked, then clicking 0K writes the 32-bit
result into a destination buffer location at the specified start Address. If this option is
unchecked, ChipProg+ just displays a checksum in a pop-up box.

‘Device Information’ Window

= This window displays the type of selected target device
PR e e ENNERRE and a list of programming adapters that fit all available

sl e e packages for the selected device. For example the picture
here shows only one Phyton adapter available for a SOIC
package of the selected AT89C2051 Atmel

microcontroller — ‘AE-SC18/28°.

The pictogram at left shows the correct insertion of a
DIP-packaged 20-pin AT89C2051 device into a 40-pin
ZIF socket. The pictogram at right shows how a 20-pin
SOIC-DIP adapter AE-SC18/28U should be inserted into
Window Deice normatirt the programmer ZIF socket.

‘Console’ Window

The console window displays the ChipProg+ error messages and what-to-do prompts. It
stores messages even if it is closed. You can open it at any time to view the last 256
messages, and get help for any of them.

The ‘View’ Menu and Programmer Windows 31

Phyt@n Universal Programmer ChipProg+

= Console : =l
MHelp| Clear k
Addresz=z out of range

Indefined =ymbol

Source area does not fif into destination sub-level
Source area doss not fit into destination sub-lewvsel

The 'View only' option i= o lit.in-:r dizabled. Click the 'View' button on toolbar to enable editing.

i Double click to invoke Help topic

Error Messages and Prompts in the Console Window

The current message line is highlighted. You can move the highlight by using the mouse
(a single click moves the highlight bar to the current mouse pointer position) or by using
the arrow keys of the keyboard. Double click on the highlighted line to invoke the
ChipProg+ context-sensitive Help topic appropriate to the message contents.

2ix]] By default, while the cConsole window is closed,
oreee ot seee o e o all error messages and prompts are disp_layed in
pop-up boxes. See an example here. Click the
4 , button to invoke the ChipProg+ context-sensitive
AT R Help topic associated with the error, or click the

button and continue after correcting a
e oFopep Sertieeses parameter error.
When the console window is open the programmer automatically sends error and
information messages to it, without popping up individual message boxes. In many
situations it is more convenient to use the console window because: a) you can see as
many as the last 256 messages and get help for any of them by a mouse click on the
message line, and b) no user response to the issued message is required. However, you
may prefer to save screen space by closing the console window and getting pop-up
messages in response to each incorrect action or error received from the programmer. To
be sure that you do not miss error messages, go to Main menu > Configure > Display
options and check the box Message Box Display. Then all messages will be displayed
as dialog message boxes, even when the Console window is open.

The ‘View’ Menu and Programmer Windows 32

PhytGn

Universal Programmer ChipProg+

Chapter 8 The ‘Configure’ Menu and Main Programming

Settings

This menu is a control center for configuration dialogs of all kinds. See the menu tree.

Sehect device..,

Buffers..,

Device selection history...

Preferences...
Enwironment...
Editor options. ..

[Adar] L

Filz b e

Configure Menu

Selecting a Target Device

File Wiew rc_orﬁure Commands Scripts Win
Click on the select device line of the configure menu

or click on the button on the main toolbar.
The dialog below will open.

First choose the type of device and the manufacturer in

order to narrow down the list. All devices are grouped
in a few categories:

Select Device

i Device types ta list i~ Device:
£

" EPROM. EEPROM, FLASH
" FLD, PAL, EPLD

£+ Miciogontrollers

Search mask:

£ 15P Programming

PIC1ELCE20
PICTELCE204
PICIELCE21
PICTELCE214
PIC1ELCEZ22
PIC1ELCE224
PIC1ELCE2Y

— Manufacturers

Angstrem -
Lt
Dallas

Freescale

EPROM, EEPROM, FLASH - all kinds of
parallel and serial programmable memory
devices: flash, UV-erasable, one-time-
programmable (OTP), etc.

PLD, PAL, EPLD - all types of
programmable logical devices.
Microcontrollers —all kinds of embedded
microcontrollers with programmable

Hitacki PICTELCEZE .
o FICIELCES memory: flash, UV-erasable, one-time-
Ifean FicTeLoR programmable (OTP), etc.
1551 PICT1ELCES . R
e EEEEEEES ISP Programming — all devices that can be
EEET | |01 o7 programmed in-target via a special cable
r— List options i i
(:L\slpdevices of the zelected manufacturer only adapter’ InStead Of to be placed Into the
 List devices of all manufacturers ChlpPl"Og+ ZIF socket.

[corcel | B

Target Device Selection

To expedite finding a target device from a
long list, type the first letters of the part number for a chosen manufacturer in the search
mask box. This narrows down the list of devices in the Device field and expedites
finding the device to be chosen. Keep the radio button List devices of the selected
manufacturers only checked if you wish the device list to exclude devices produced by
other manufacturers. This will make the device search easier.

Devices’ part numbers are shown in the list from top to bottom in an alphabetical order

and in the order of increasing numbers (i.e., for example PICE16L.C628, PIC16LC63,
PIC16LC63A, etc.).

The ‘Configure’ Menu and Main Programming Settings 33

PhytGn

Universal Programmer ChipProg+

IMPORTANT NOTE!

However all the devices programmed “in-system” are shown below the list of those
programmed in the programmer socket. If the same device can be programmed in
both modes: in socket and in-system you can find the first placement in the top list
and a second one in the bottom list. To avoid a wrong programming mode selection it
is highly recommended to always check the ISP Programming radio button when
using ChipProg+ for programming any device “in-system” via a special cable.

Picking a Device from History List

Click the Device selection history line of the configure menu and you will open a list
of recently selected devices. The most recent

Select device: x|

Microchip FIC16LCET
Mitsubishi M30624FGLFP
AMIC AZ90021T

Atrnel ATB9CE1CC03
S5T S5T39VFE401B
Microchip FIC16CE4
Microchip 24LC1025

Micrachip FICT18LF4550
SET SETHECES

SST SSTE8VE4RD2 %
Philips PELPCY3E
Atmel ATBICEHT
|V’ oK, I |x Cancell |? Help I

History List of Selected Devices

Adding and Deleting Buffers

Click the Buffers... line of the configure menu and you will open the Buffers dialog; it
allows you to reconfigure existing buffers, to remove some of them, or to add new ones

to the list.

- Buffer List
Buffer #0: Code [128
Moanitar: Code [128 K],

words, |D location (8], words
rds, ID location [3], words

) ﬁdd... | (38 Deete | [Ear. | [view |

2 x

Adding, Deleting and Editing Buffers

device is always on top of the list. Click ok if
that’s what you want. To choose a different
device, highlight it and click [0k to pick it from the
history list.

Click the jAdd button to open a new
buffer. This pops up the new buffer
properties dialog that was described
earlier in the chapter “Configuring a
Buffer.” Accept the default properties or
enter your own convenient name, and
select the buffer size you want in the
range 128K to 64Mbytes.

To delete a buffer, highlight its name and
click the button.

To change any properties of an existing
buffer, highlight its name and click the

The ‘Configure’ Menu and Main Programming Settings 34

Phyt@n Universal Programmer ChipProg+

Edit button. This pops up the same dialog that’s used to add a new buffer. You will be able
to change the buffer’s name and other properties.

To open a buffer window for viewing, highlight the buffer name and click the button.

Configuring Preferences

Click on the preferences line in the configure menu to invoke a dialog that allows you
to preprogram some procedures framing major commands executed by the programmer.

Check the Reload last file on start-up box if you are

— fi -ag ? . . - -

o : ks working with only one file and want to save time on
LB i . v loading it repeatedly. In other cases this option makes no
[+ Execute PawerOn test an startup ..

_ sense and by default it is off.
- Device operation emor sound

 None
cgant] e | By default the programmer conducts a self-testing
e e power-on procedure every time it starts up. Phyton
r Device operation complete sound hlghly recommends keeplng thlS Option aIWayS On.
£ None R N

e = However it can be switched off.

" Sound 2 Test
Lo The programmer is able to generate different tone
Sounds and Other Prefarences signals on error and on successful completion of
programming operations. You can either disable tones
altogether or select one of two preloaded tones for each
event. Clicking the button generates a tone signal so you can select one you like.

To complete setting the preferences do not forget to click oK in the dialog.

Configuring the Programming Environment

Click the Environment line in the configure menu to invoke a dialog that allows
customizing such elements as fonts and colors in windows, hotkey combinations, toolbar
buttons and some other GUI settings. Most of these settings were described in the chapter
“Toolbars and Graphic User Interface Customization”.

The ChipProg+ software is equipped with a powerful embedded editor that is used for
editing script files. Click on the Editor Options line in the configure menu to set up the
editor. Script file concepts, methods of use and the script editor are described in the
“Scripts” chapter.

The ‘Configure’ Menu and Main Programming Settings 35

Phyt@n Universal Programmer ChipProg+

Chapter 9 The ‘Commands’ Menu

This menu invokes main commands (or functions) that control the programming process,
as well as some service commands. A horizontal line separates the two groups of
commands. You can execute a command by a single click on the highlighted line of the
menu. For your convenience, the major commands, which are common for almost all
target devices and frequently used (Check, Program, Verify, Read, Erase, and Auto),
are duplicated by large buttons on the main programmer toolbar.

|—C6mmanf§ Scripts Window Help

Erase H @heck Progr Verify Read Erase Au@
Blark Check
Program vi X Main commands
Werify
Read -0 =] ﬂProgram Manager
Auto programming
Ek—] Program Manager | Optians & spli |
Local menu Ctrl+F10, Ctrl+Enter = Buifer:
Calculatar. . Shift+F4 FF | 99y yivyvyvyy Buffer #0t Code [126K), bytes

hdenu Commands

As mentioned earlier, you can also invoke the main commands from the Program
Manager Window; choose the option that’s most convenient for you.

If the or buttons are blocked by the programmer (“greyed out™) then a selected
device can be programmed even if it’s not blank; the information in it will be overwritten.
In this case, execution of the Program command will automatically erase previously
written data before writing new data to the same cells.

‘Check’ Command

New devices usually come from manufacturers with no information inside; i.e., they are
“blank”, unless they are programmed at the factory, pursuant to special orders. For many
devices the “blank” status means that they are filled with ‘FFh’ data (some old devices
come filled with zeros). The blank status means that the device can be physically
programmed. However, even if you work with new devices it is best to check the target
device by executing the Blank command before programming to make sure that it is
really blank.

The command checks the contents of a target device in the range of addresses specified in
the Program Manager window. By default it starts at address zero (or from a specified
start address) and continues to increment addresses until the highest (or specified End)
address is achieved. If the device is not blank the programmer issues an error message
that displays the non-blank address and its contents.

The picture above shows the error message on the first address at which the programmer
has read data different from ‘FFh’. As you can see the range from 0 to 19h is blank; i.e. it

The ‘Commands’ Menu 36

Phyt@n Universal Programmer ChipProg+

is filled with ‘FFh’. The cell at address 1Ah
contains ‘55h’. The device should be erased or, if
ko, 005180 that is impossible, it should be discarded.

ooonoook: FF FF FF FE FF FF FF FF FF FF FF FF FF
000" FFPWEF FF FF FF FF FF FF FF FF FF FF FF
0l 5 55 55 55 55 55 55 55 55 55 55 55
oo0UTETET PR, 55 55 55 55 55 55 55 55 55 55 G5
0000034k: 55 55

0000041 Fr rm

g 55 55 55 55 55 55 55 55 55 55

5
[lank check erro: s
ooooos % o
ooonoe i}
ooooo? CHIF: AddreSS=UUUUUUh§h, alug=00000055h I3
ooooog 5
ooooog 5
ooooog 5
00000 i
00000E E
oooooc o
ooopoT Continue Help 5
Qooooc I ? I i}
00oo0oE 5
00000F Terminate I 3
ooooio I
00001 1rer 3

Blank Check Error

‘Program’ Command

This command writes the contents of the buffer into the target device’s cells. It programs
a target device in a range of addresses specified in the Program Manager window; it
picks source information from the buffer beginning at the Buffer start address. By
default the program increments addresses from zero (or from a specified start address)
until the highest (or specified End) address is achieved. If a device cell is not blank or is
physically damaged, the programmer fails to program this cell and issues an error
message that displays the failed address and the contents of the buffer and device cell at
the shown address.

‘Verify’ Command

This command reads information from a target device in a range of addresses specified in
the Program Manager window and compares it byte-by-byte with the corresponding
information in the buffer beginning at the Buffer start address. By default it increments
addresses from zero (or from a specified start address) until the highest (or specified
End) address is achieved.

il =l 1f the content of the device’s cell is not equal to the
EHF. kkess-00000050h, v de-00000058H corresponding data in the buffer, the programmer issues

a verification error message. The picture here shows
such a message. The device cell with the address 5Dh
Comine | [2 Hee] contains the data 55h while the buffer location with the
fomnde | same address contains 51h.

Verification Errar

The ‘Commands’ Menu 37

Phyt@n Universal Programmer ChipProg+

‘Read’ Command

This command reads the content of the target device’s cells into an active buffer. It reads
from the device in a range of addresses specified in the Program Manager window. By
default reading starts from zero (or from a specified start address) and goes until the
highest (or specified End) address is achieved. The information is stored in the buffer
beginning at the Buffer start address. You can observe the information in the buffer
window; you can also edit and save it on a computer disk.

‘Erase’ Command

This command erases all cells of the target device installed in the programmer socket.
The device’s cells will be filled by some default value specific for each type of device
(usually *FFh’). Some electrically erasable memory devices cannot be erased, but
information can be written over the information in their cells. If such a device is selected,
the programmer rejects the command and issues a warning. The large button grays
out when such a device is selected.

When you try to erase a pre-programmed one-time programmable (OTP) device, or a
device that is protected against erasing, the programmer issues a warning that indicates
the address at which the data cannot be erased.

‘Auto Programming’ Command

When you invoke this command you actually start a
batch of consecutively executing commands pre-selected
in the Program Manager window (the button).
For example, on the picture here the commands are
shown in the order of execution from Erase down to

- - Protect. Thus when you start Auto Programming, the
Corrrand St for Auto Programming programmer will first erase data in the target device and
check if the device is blank; then it will program the
device, verify the programming and then it will protect

Edit Aute Programming Functions list

aaaaa

the device against reading.

‘Local Menu’ Command

This command invokes a pop-up local menu of the most-frequently used commands
associated with an active window. Each window has its own set of such commands. The
same local menu can also be invoked if you place a mouse cursor within a window and
click the right mouse button.

‘Calculator’ Command

This command invokes a convenient embedded calculator that helps to evaluate
expressions and convert resulting values from one supported number base to another.

The ‘Commands’ Menu 38

Phyt@n Universal Programmer ChipProg+

Chapter 10 The ‘Scripts’ Menu

The programmer software is equipped with an embedded script language for creating and
performing custom-made routines that allow automation of complex programming
operations. Among these are:

+ Loading files

+ Setting up programming options

+ Programming

+ Data verification

+ Checksum calculations

+ Data analysis

+ Checksums and branching actions upon the results
+ Manipulation of data in data buffers

+ Displaying messages in the ‘Console’ window
+ Displaying graphical data in special windows
+ Creation of user menus

+ Storing data in files

Script files are written in a C-type language. Almost all C constructions are supported,
except for structures, conjunctives and pointers. Many built-in functions are available,
such as printf(), sin(), and strcpy(). A full description of the programmer script language
is published in the ‘Scripts’ chapter of the ChipProg+ on-line Help.

A script is a file with extension .cmd. It can be created and debugged right in the
programmer’s software shell by means of an embedded editor and a debugger. Then it
can be started for execution. Several examples of scripts supplied with the programmer
are placed in the “\Examples.cmd’ folder.

The scripts menu invokes all the commands

T TR associated with script controls. A horizontal line
Compute checksum divides the menu commands into two groups. The
Load fle and automaticaly program it commands above the line represent scripts supplied

Program at different prograrmming voltages

T with the programmer as well as those prepared by a
T programmer user and placed in the “\Examples.cmd’
L] folder. You can start the execution of any script
from this group by double clicking its name.

Open Script Source

Open Watches winidow

Add weatch...

Editor wirdo 4

L:ft::‘this . *¥| The commands below the line invoke scripts or
é '] their properties for editing, debugging or control.

Menu 'Scripts' with Script Examples

The ‘Scripts’ Menu 39

Phyt@n Universal Programmer ChipProg+

Creating and Editing Scripts

To create a new script, click the New Script Source menu line in the script. tree Then
you can type a new script in a pop-up window, following the rules for making scripts for
ChipProg+. When you finish and attempt to close the window, the program offers to save
the script source in a location on the PC’s hard disk. Use the .cmd extension as part of the
name. Then you can always invoke this script for editing and debugging.

You can also open a window to create a new script by selecting the Editor window menu
entry and then selecting New.

To open an existing script for editing, select Editor window, then select open, and
browse for a script. Alternately, you can just type its name into the File name box or pick
a script from a history list.

The embedded editor supports an operation repertoire that includes entering text,
copying, searching, etc.

Setting Editor Options

The ChipProg+ software is

Editor GRS = 2l equipped with a powerful
ity | KevMaprings embedded editor that is used
~ Optiors .y . . .
pBackspa.c.:egnindents Tah size I8 'l for Edltlng SCI’Ipt fIIeS CIICk
Bl e R on the Editor Options line in
rl:.%elsistent hIDCkSé 7liu:mab:ic word completion the Con fi g ure menu to invo ke
r:ﬂorizontal o b Erobic i 1
Lt vl Hbe the _dlalog be_low. All ed |_t0r
R Sntaxigding e options applicable to all its
v Highlight mult-ine comments /* * [Indentng -
I Autc o e pere c o windows are set up here.
™ Full path in windows itls " 3 the previous line F nCtIOHS Of mOSt Of the
g Empty clipboard before copying 1+ Match '{ brace u
Convert keyboard input to OEM 1 1 1 1
L e settings in this dialog are clear
from their names.

|w ok I|x Cancel I|? Help I

Editor Options

Indenting

If this option is off, each new line of the entered text will start from the first character of
the column. If you check the As the previous line radio button, the editor will
automatically set the cursor at the same character position whenever you complete a
current line by pressing the key on the PC.

Backspace unindents

The ‘Scripts’ Menu 40

Phyt@n Universal Programmer ChipProg+

When this option is checked (enabled) and the insert mode is active, and the cursor is
positioned at the first character of a line, then if you press the key, any preceding
blank spaces on the line are deleted and the first character of the line appears in the first
character column.

When this option is checked and the overwrite mode is active, and the cursor is
positioned at the first character of a line, then if you press the key, the cursor
moves to the first non-blank character column while the first character of the line remains
in place.

When this option is unchecked (disabled) and the insert mode is active, and the cursor is
positioned at the first character of a line, then if you press the key, the cursor
and all the characters in the line move one character column to the left.

When this option is unchecked and the overwrite mode is active, and the cursor is
positioned at the first character of a line, then if you press the key, only the
cursor moves one character column to the left while all the first characters of the line
remain in place.

Keep Trailing Spaces
If this box is checked any trailing spaces on a line are saved in the buffer and on the disk
during editing. Otherwise, trailing spaces are not saved.

Vertical Blocks

The process of writing and editing script source files differs slightly from writing and
editing other types of text documents. The basic difference is that program text is
formatted and has a more-or-less regular structure.

Text is divided into lines

These lines often have the same structure; for example, they are divided into
fields and every field starts at a specific position

The same fields are located in different lines one under another

For example:

Timer0 .DB 2
Timerl .DB 2
Int0 .DB 1
Intl .DB1

ChipProg+’s built-in editor has features for working with formatted as well as non-
formatted text. The difference first of all relates to block operation: "standard™ blocks as
well as vertical and string blocks are supported. Automatic indent mode is available. This
mode can be turned off.

The ‘Scripts’ Menu 41

PhytGn

Universal Programmer ChipProg+

As mentioned above, when developing a program, a programmer works mainly with

formatted text. "Standard" blocks that are

used in most of the Windows programs are not

convenient for such text. That is why ChipProg+ supports two additional block types
(line blocks and vertical blocks) as well as standard blocks. It should be noted that

standard blocks are turned on by default.

Debugging and Running Scripts

Script Files 2l x|
Seript files ist
VPP WP . Stopped, PC=00010000 ['PP' Terminate |
AUTO UaUTO" |d: 2, Stopped, PC=00020000 [l
Teminate Al |
Restart |
8| | _>] Debug |

— Start new script file

Seript file name:

Ic:\phyton\uprognt\4_DD_1 Ehauto.cmd

Ll

Defines:
|

Hinclude-file directonies:

@D ebug [open Script S ource window)

¥ Auto-save script file sources

g@ Start | I?T'DI

Starting and Debugging Scripts

kel =

Click on the start... line in the script menu.
The script Files window to the left will pop
up. To debug a script, browse for a script file
name or just type it into the File name box,
or pick the script from a history list. To
debug a selected script check the bebug box
at the bottom of the window. Click the
button at the bottom. It will open a script
window (see below).

The window below has two panes. The left one represents a source text of the loaded
script and the right pane displays local variables, or watches, belonging to the lines of the
script text. Each pane has a toolbar with the a few hotkeys, so you can step through the
script text, start it or restart it for execution, set breakpoints, change addresses, etc.

// Doop on programming valtage
for (Vpp = 12.0; Vpp < 14.1; vpp += 0.1)
i
sprintf (Vpp&tring, "%g", Vpp); /f eor
SetProgOption{("Vpp", VppString); // st
mprintf {"Programming at %g...", Vpp) e play
if (ExecFunction ("Program”, 0, 1) l= EF_OK) // d
{ // display an error message on error
printf ("Programming failed at VPP=%g: 3%z, VppJ
break; // break loop
b
¥

4

- ol x|
T Step RBun Siop | Break | #wWatch| Qrigin | NewPC| Restart Afritelln] Setup
#include <mprog.h> -1
void main () Seript source pane, Local watches, pane.
{ ¥
float Vpp; Vpp=0
char vhbpstring[48]; % VppString="%04\04 0% 0404 0% 0Y

Vpp=0

VppString="\0%040% 0404 0% 0%
Vpp=0, VppString="%\0%0%0%0
vpp=0

Vpp=0, LastErrorMessage="A

Vpp=0

ProgOptionDefault ("Vpp™): // restore Vpp to defaul v|
»

PP Id: 3, Stopped, PC=00030000 PP

Script Window

The ‘Scripts’ Menu 42

Phyt@n Universal Programmer ChipProg+

Chapter 11 How to Operate the Programmer
This chapter briefly describes most frequently used operations with the programmer.

How to Check if a Device is Blank

1. Select the target device type

2. Insert a device of the selected type into the programmer socket

3. Click the button and wait for the message Programming ... OK in the
Program Manager window, or a warning message if the device is not blank.

How to Erase a Device

1. If the device in the programmer socket is not blank, make sure the selected type
corresponds to an actual device’s label.

2. Make sure the device is electrically erasable. Some devices are not erasable; these
may be programmable once, UV erasable, or over-writable — in this case the Erase
button is blocked (grey out).

3. If the device is electrically erasable click on the Erase button and wait for the
message Erasing ... OK inthe Program Manager window, or a warning message
if the device is not blank.

How to Program a Device

In order to program a device you need to perform a few consecutive operations: to load
the file that you want to write to the device; edit the file (if necessary); configure the
device to be programmed (if necessary); write the prepared information into the device
and verify the programming.

How to Load a File to be Written into the Device

1. From the main menu select via the File > Load command.

2. Enter the source file name, select the file format, the destination buffer and
addresses and click K.

3. Wait for the message File loaded in the Program Manager window, or an error
message.

How to Edit Information to be Written into the Device

1. If you need to modify source data before writing into the target device, then
release the button on the local toolbar of the Buffer window to enable editing.
2. Make necessary changes in the window.

How to Configure the Device to be Programmed

1. If any parameters displayed in the Device and Algorithm Parameters window
can be changed by editing, their names are shown in blue.

2. Click on the name of the parameters to be changed to open an appropriate dialog.
Set a new value for the parameter or check/uncheck appropriate boxes and click
oK. The parameter value will change its color to red.

How to Operate the Programmer 43

Phyt@n Universal Programmer ChipProg+

3.

Continue for every parameter that should be changed. All preset changes will
become effective in the target device only upon programming via the Program
Manager programming function.

How to Write Information to the Device

1.

Click the tab in the Program Manager window. Check the options
you need. We recommend that you always check the Blank check before
program and verify after program check-boxes to make programming more
reliable.

Click the tab. Select the Program line in the Function window,
and double click it to start programming. Alternatively you can do the same by
clicking the button or the big button or the Program command in
the Commands menu.

Wait for the message Programming ... OK inthe Program Manager window. If
an error has occurred there will be an error message.

Go down to the list of functions, expanding them if collapsed. Select the function
and double click it to program a current parameter in the device.

Wait for the message Locking... OK, Or Setting... OK, Or other ok message in
the Program Manager window, or an error message.

Continue until every parameter that was changed in the Device and Algorithm
Parameters window, is successfully programmed.

How to Verify Programming

1.

2.
3.

Usually the programmer compares the contents of the device with the contents of
the source buffer right after the device is programmed.

For additional verification click the button on the main toolbar.

Wait for the message verifying ... OK inthe Program Manager window, or an
error message.

How to Read a Device

1.
2.

Click the button on the main toolbar.
Wait for the message Reading... OK inthe Program Manager window, or an
error message.

How to Save the Data Read out from a Device

1.

2.

After the device was read out its contents are copied into the buffer. On the local
toolbar of the buffer window click the button.

In the pop-up dialog specify the destination file name, format, start and end
addresses of the source (the buffer), and the source sub-level, and click [OK|.

How to Duplicate a Device

1.

2.

Insert the master device, which is to be copied (duplicated) to a blank device, into
the programmer socket.
Click on the button on the main toolbar.

How to Operate the Programmer 44

Phyt@n Universal Programmer ChipProg+

3. Wait for the message Reading... OK inthe Program Manager window. Make
sure the master device content is in a current buffer.

4. Remove the master device from the socket and replace it with a blank device. If
necessary, check to see if it is blank.

5. Go back to the section “How to Edit Information to be Written into the Device™
and proceed as if you were writing a file to a device.

How to Operate the Programmer 45

	Universal Programmer
	User’s Guide
	Copyright Notice
	Disclaimer
	Trademarks

	T

	Introduction
	Package Content
	System Requirements

	Software Installation
	Hardware Installation and Start up
	Controls and Insertion Devices and Adapters
	LED Indicators
	Programmer Self-Testing
	Starting the Programmer

	Toolbars and Graphic User Interface Customization
	Customizing the Environment
	Customizing Fonts
	Customizing Colors
	Key mapping
	Customizing Toolbars
	Miscellaneous Settings

	The ‘File’ Menu
	Loading and Re-loading Files to Buffers
	Loadable file formats
	Loading files to sub-levels
	Offset for loading addresses

	Saving Files from Buffers
	Saving and Loading Configuration Files

	The ‘View’ Menu and Programmer Windows
	‘Program Manager’ Window
	Execution of Programming Functions
	Auto Programming
	Controlling Source and Destination Addresses

	‘Device and Algorithm Parameters’ Window
	‘Buffer Dump’ Window
	Setting up the Buffer Dump window presentation
	Configuring a Buffer
	Setting the Buffer Dump Start Address
	Operations with Blocks in Buffer Dumps
	Fill with data
	Search for data
	Copy
	Compare
	Invert
	Calculate Checksum

	‘Device Information’ Window
	‘Console’ Window

	The ‘Configure’ Menu and Main Programming Settings
	Selecting a Target Device
	Picking a Device from History List
	Adding and Deleting Buffers
	Configuring Preferences
	Configuring the Programming Environment

	The ‘Commands’ Menu
	‘Check’ Command
	‘Program’ Command
	‘Verify’ Command
	‘Read’ Command
	‘Erase’ Command
	‘Auto Programming’ Command
	‘Local Menu’ Command
	‘Calculator’ Command

	The ‘Scripts’ Menu
	Creating and Editing Scripts
	Setting Editor Options
	Indenting
	Backspace unindents
	Keep Trailing Spaces
	Vertical Blocks

	Debugging and Running Scripts

	How to Operate the Programmer
	How to Check if a Device is Blank
	How to Erase a Device
	How to Program a Device
	How to Load a File to be Written into the Device
	How to Edit Information to be Written into the Device
	How to Configure the Device to be Programmed
	How to Write Information to the Device

	How to Verify Programming
	How to Read a Device
	How to Save the Data Read out from a Device
	How to Duplicate a Device

